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Abstract: In multidimensional datasets concurrent accesses to 
data via indexing structures introduce the problem protecting 
ranges specified in the retrieval from phantom insertions and 
deletions. This paper proposes a novel approach for 
concurrency in multidimensional datasets using Advanced 
Indexing Technique like generalized search tree, R tree and its 
variants, constitutes an efficient and sound concurrency access 
model for multidimensional databases and it supports efficient 
operations with serializable, isolation, consistency and 
deadlock free. 
 
Index terms: Concurrency Control, Locking Management, 
Phantom Problem. 
 

1. INTRODUCTION: 
Over the last decade (1988-98), the R tree has emerged as 
one of the most robust multidimensional access methods. 
However, before the R tree can be integrated as an access 
method to a commercial strength database management 
system, efficient techniques to provide transactional access 
to data via R trees need to be developed. Concurrent access 
to data through a multidimensional data structure 
introduces the problem of protecting ranges specified in the 
retrieval from phantom insertions and deletions (the 
phantom problem). Existing approaches to phantom 
protection in B trees (namely, key range locking) cannot be 
applied to multidimensional data structures since they rely 
on a total order over the key space on which the B tree is 
designed. The paper presents a dynamic granular locking 
approach to phantom protection in R trees. To the best of 
our knowledge, the paper provides the first solution to the 
phantom problem in multidimensional access methods 
based on granular locking. 
The phantom problem is defined as follows (from the 
ANSI/ISO SQL-specifications Transaction T1 reads a set 
of data items satisfying some <search condition>. 
Transaction T2 then creates data items that satisfy T1’s 
<search condition> and commits. If T1 then repeats its 
scan with the same <search condition>, it gets a set of data 
items (known as “phantoms”) different from the first read. 
Phantoms must be prevented to guarantee serializable 
execution. Object level locking does not prevent phantoms 
since even if all objects currently in the database that 
satisfy the search predicate are locked, concurrent 
insertions into the search range cannot be prevented. 
 
1.1. Modes of lock:  Let me go ahead in explaining you the 

various modes available with a typical table as above: 
Modes of 

Lock 
Comment 

Shared 

This is a typical mode of operation for Select 
statements where the resource can be shared 
by multiple users. Since you are just reading 
the data you can share the resource. 

Modes of 
Lock 

Comment 

Exclusive 

The next operation we can think of is to do an
DML operation (Insert / Update / Delete).
This lock ensures that two people do not do
the modification on the same data at the same
time. 

Update 
This lock mode is used to mark an 
object for the update operation. 

Intent 

This mode establishes an locking tree 
mechanism wherein it can include an intent 
shared, intent exclusive and share with 
exclusive locks. This mode does stress the 
point that the data can be updated at any 
time. For example, this happens when you 
take a cursor for update. 

Schema 

This lock is taken when we do an DDL 
operation where the integrity of the database 
schema needs to be verified. This can 
include from creating a table, procedure, 
alter a column width, adding an column etc. 

Bulk 
Update 

This is taken when we do an Bulk-Upload of
data or Bulk Copying of data into the system.

 
1.2. Approaches to Phantom Protection: 
There are two general strategies to solve the phantom 
problem, namely predicate locking and its engineering 
approximation, granular locking. In predicate locking, 
transactions acquire locks on predicates rather than 
individual objects. Although predicate locking is a 
complete solution to the phantom problem, the cost of 
setting and clearing predicate locks can be high since (1) 
the predicates can be complex and hence checking for 
predicate satisfiability can be costly and (2) even if 
predicate satisfiability can be checked in constant time, the 
complexity of acquiring a predicate lock is proportional in 
the number of concurrent transactions which is an order of 
magnitude costlier compared to acquiring object locks that 
can be set and released in constant time [9]. In contrast, in 
granular locking, the predicate space is divided into a set of 
lockable resource granules. Transactions acquire locks on 
granules instead of on predicates. The locking protocol 
guarantees that if two transactions request conflicting mode 
locks on predicates p and p0 such that p^p0 is satisfiable, 
then the two transactions will request conflicting locks on 
at least one granule in common. Granular locks can be set 
and released as efficiently as object locks. For this reasons, 
all existing commercial DBMSs use granular locking in 
preference to predicate locking.  
An example of the granular locking approach is the 
multigranularity locking protocol (MGL) [12]. MGL 
exploits additional lock modes called intention mode locks 
which represent the intention to set locks at finer 
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granularity (see Table 1). Application of MGL to the key 
space associated with a B-tree is referred to as key range 
locking (KRL) [12, 13]. KRL cannot be applied for 
phantom protection in multidimensional data structures 
since it relies on the total order over the underlying objects 
based on their key values which do not exist for 
multidimensional data. Imposing an artificial total order 
(say a Z-order [14]) over multidimensional data to adapt 
KRL would result in a scheme with low concurrency and 
high lock overhead since protecting a multidimensional 
region query from phantom insertions and deletions will 
require accessing and locking objects which may not be in 
the region specified by the query (since an object will be 
accessed as long as it is within the upper and the lower 
bounds in the region according to the superimposed total 
order). It would severely limit the usefulness of the 
multidimensional AM, essentially reducing it to a 1-d AM 
with the dimension being the total order. 

1.2. Desiderate of the Solution:  
Since KRL cannot be used in multidimensional index 
structures, new techniques need to be devised to prevent 
phantoms in such data structures. The principal challenges 
in developing a solution based on granular locking are: 
 Defining a set of lockable resource granules   over the 
multidimensional key space such that they (1) dynamically 
adapt to key distribution (2) fully cover the entire 
embedded space and (3) are fine enough to afford high 
concurrency. The importance of these factors in the choice 
of granules has been discussed in [9]. The lock granules 
(i.e. key ranges) in KRL satisfy these 3 criteria. 
Easy mapping of a given predicate onto a set of granules 
that needs to be locked to scan the predicate. Subsequently, 
the granular locks can be set or cleared as efficiently as 
object locks using a standard lock manager (LM). 
Handling overlap among granules effectively. This 
problem does not arise in KRL since the key ranges are 
always mutually disjoint. In multidimensional key space 
partitioning, the set of granules defined may be, in GiST 
terminology, “mutually consistent”. For example, there 
may be spatial overlap among R-tree granules.  
This complicates the locking protocol since a lock on a 
granule may not provide an “exclusive coverage” on the 
entire space covered by the granule. For correctness, the 
granular locking protocols must guarantee that any two 
conflicting operations will request conflicting locks on at 
least one granule in common. This implies that at least one 
of the conflicting operations must acquire locks on all 
granules that overlap with its predicate while the other 
must acquire conflicting locks on enough granules to fully 
cover its predicate [5]. This leads to two alternative 
strategies: 
Overlap-for-Search and Cover-for-Insert Strategy (OSCI) 
in which the searchers acquire shared mode locks on all 
granules consistent with its search predicate whereas the 
inserters, deleters and updators acquire IX locks on a 
minimal set of granules sufficient to fully cover the object 
being inserted, deleted or updated. 
Cover-for-Search and Overlap-for-Insert Strategy (CSOI) 
in which the searchers acquire shared mode locks on a 
minimal set of granules sufficient to fully cover its search 
predicate whereas the inserters, deleter’s and updater’s 
acquire IX locks on all granules consistent with the object 
being inserted, deleted or updated.  

While the former strategy favors the insert and delete 
operations by requiring them to do minimal tree traversal 
and disfavors the search operation by requiring them to 
traverse all consistent paths, the latter strategy does exactly 
the reverse. Intermediate strategies are also possible. For 
GL/GiST, we choose the OSCI strategy in preference to the 
rest. The OSCI strategy effectively does not impose any 
additional overhead on any operation as far as tree traversal 
is concerned since searchers in GiST anyway follow all 
consistent paths. The CSOI strategy may be better for index 
structures where inserters follow all overlapping paths and 
searchers follow only enough paths to cover its predicate. 
The R+-tree is an example of such an index structure [15]. 
We assume that the OSCI strategy is followed for all 1In 
this paper, we use the term “granules” to mean lock units – 
resources that are locked to insure isolation and not in the 
sense of granules in “granule graph” of MGL [9]. This is 
discussed in further detail in Section 4.1. discussions in the 
rest of the paper. 
Preventing Phantoms 
 Table locking prevents phantoms; row locking does not 

Predicate locking prevents phantoms 
 A predicate describes a set of rows, some are in a table 

and some are not 
 Every SQL statement has an associated predicate 
 When executing a statement, acquire a (read or write) 

lock on the associated predicate 
 Two predicate locks conflict if one is a write and there 

exists a row (not necessarily in the table) that is 
contained in both. 

 
Terminology  
In developing the algorithms, we assume, as in [12], that a 
transaction may request the following types of operations 
on GiST: Search, Insert, Delete, Read Single, Update 
Single and Update Scan. In presenting the solution to the 
phantom problem, we describe the lock requirements of 
each of these and present the algorithms used to acquire the 
necessary locks. The lock protocols assumes the presence 
of a standard LM which supports all the MGL locks modes 
(as shown in Table 1) as well as conditional and 
unconditional lock options [16]. Furthermore, locks can be 
held for different durations, namely, instant, short and 
commit durations [16]. While describing the lock 
requirements of various operations for phantom protection, 
we assume the presence of some protocol for preserving the 
physical consistency of the tree structure in presence of 
concurrent operations. The lock protocol presented in this 
paper guarantees phantom protection independent of the 
specific algorithm used to preserve tree consistency. In our 
implementation, we have combined the GL/GiST protocol 
with the latching protocol proposed in [10]. We do not 
describe the combined algorithms in this paper due to space 
limitations but can be found in the longer version of this 
paper [5]. 
 

2 RELATED RESEARCH AND MOTIVATION 
In this section, we review the structure of the R-tree family, 
discuss some limitations that affect R+-trees, survey major 
concurrency control algorithms based on B-trees and R-
trees, and summarize the challenges inherent in applying 
concurrency control to R+-trees.  
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2.1 R-Tree Index Structure: 
An R-tree [2] is a height-balanced tree similar to a B-tree 
with index records in its leaf nodes containing pointers to 
data objects Nodes correspond to disk pages If the index is 
disk resident, and the structure is designed so that a spatial 
search requires visiting only a small number of nodes The 
index is completely dynamic; inserts and deletes can be 
inter- mixed with searches and no periodic reorganization is 
required.  
2.2. R-Plus Tree:  
We move now to formally describe the structure of R+ Tree 
[3]. A leaf node is of the form (oil, RECT) where oil is an 
object   identifier and is used to refer to an object in the 
database. RECT is used to describe the bounds of data 
objects. For example, in a 2-dimensional space, an entry 
RECT will be of the form (Xlow,Xhigh,YIow,Yhigh) 
which represents the coordinates of the lower-left and 
upper-right corner of the rectangle. An inter- mediate node 
is of the form where p is a pointer to a lower level node of 
the tree and RECT is a representation of the rectangle that 
encloses. 

 
Fig 2.a Rectangles organized on to R Tree 

 
Fig 2.b. R Tree for Rectangles of Fig 2.a. 

 
Fig 2.c Rectangles organized on to R Plus Tree 

 
Fig 2.d. R Plus Tree for Rectangles of Fig 2.c. 

2.3 Concurrency Controls: 
Several concurrency control algorithms have been proposed 
to support concurrent operations on multidimensional index 
structures, and they can be categorized into lock-coupling-
based and link-based algorithms. The lock coupling- based 
algorithms [20], [21] release the lock on the current node 
only when the next node to be visited has been locked 
while processing search operations. During node splitting 
and MBR updating, these approaches must hold multiple 
locks on several nodes simultaneously, which may 
deteriorate the system throughput. 
The link-based algorithms [29], [30], [31], [32], [26] were 
proposed to reduce the number of locks required by lock 
coupling- based algorithms. These methods lock one node 
most of the time during search operations, only employing 
lock coupling when splitting a node or propagating MBR 
changes. The link-based approach requires all nodes at the 
same level be linked together with right or bidirectional 
links. This method reaches high concurrency by using only 
one lock simultaneously for most operations on the B-tree. 
The link-based approach cannot be used directly in 
multidimensional data access methods as there is no linear 
ordering for multidimensional objects. To overcome this 
problem, a right-link style algorithm (R-link tree) [30] has 
been proposed to provide high concurrency control by 
assigning logical sequence numbers (LSNs) on R-trees. 
However, when a node splitting propagates and its MBR 
updates, this algorithm still applies lock coupling. Also, in 
this algorithm, additional storage is required to retain extra 
information for the LSNs of associated child nodes. To 
solve this extra storage problem, Concurrency on 
Generalized Search Tree (CGiST) [31] applies a global 
sequence number, the Node Sequence Number (NSN). The 
counter for NSN is incremented for each node split, with 
the original node receiving the new value and the new 
sibling node inheriting the previous NSN and its right-link 
pointer. In order for the algorithm to work correctly, 
multiple locks on two or more levels must be held by a 
single insert operation, which increases the blocking time 
for search operations. 
Several mechanisms, such as top-down index region 
modification (TDIM), copy-based concurrent update 
(CCU), CCU with non blocking queries (CCUNQ) [29], 
and partial lock coupling (PLC) [26], have been proposed 
to improve the concurrency based on the above linking 
techniques. However, the link-based approach with these 
improvements is still not sufficient to provide phantom 
update protection. Phantom updating refers to updates that 
occur before the commitment, in the range of a search (or a 
following update), and are not reflected in the results of 
that search (or the following update). Concurrent data 
access through multidimensional indexes introduces the 
problem of protecting a query range from phantom updates. 
The dynamic granular locking approach (DGL) has been 
proposed to provide phantom update protection in the R-
tree [5] and GiST [5].The DGL method dynamically 
partitions an embedded space into lockable granules that 
adapt to the distribution of objects. The leaf nodes and 
external granules of internal nodes are defined as lockable 
granules. External granules are additional structures that 
partition the non covered space in each internal node to 
provide protection. According to the principles of granular 
locking, each operation requests locks on sufficient 
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CONCLUSION 
This paper proposes a new concurrency control protocol, 
GLIP, with an improved spatial indexing approach, the 
ZR+-tree. GLIP is the first concurrency control mechanism 
designed specifically for the R+-tree and its variants. It 
assures serializable isolation, consistency, and deadlock 
free for indexing trees with object clipping. The ZR+-tree 
segments the objects to ensure every fragment is fully 
covered by a leaf node. This clipping-object design 
provides a better indexing structure. Furthermore, several 
structural limitations of the R+-tree are overcome in the 
ZR+-tree by the use of a non-overlap clipping and a 
clustering-based reinsert procedure. Experiments on tree 
construction, query, and concurrent execution were 
conducted on both real and synthetic data sets, and the 
results validated the soundness and comprehensive nature 
of the new design. In particular, the GLIP and the ZR+-tree 
excel at range queries in search-dominant applications. 
Extending GLIP and the ZR+-tree to perform spatial joins, 
KNN-queries, and range aggregation offer further attractive 
possibilities. 
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