
Advanced Indexing Techniques for Achieving
Concurrency in Multidimensional Data Sets

N Krishna Kumari, Dr. M.H.M. Krishna Prasad
Department of Information Technology, University College of Engineering

JNTU Kakinada, Vizianagaram Campus, Vizianagaram, India

Abstract: In multidimensional datasets concurrent accesses to
data via indexing structures introduce the problem protecting
ranges specified in the retrieval from phantom insertions and
deletions. This paper proposes a novel approach for
concurrency in multidimensional datasets using Advanced
Indexing Technique like generalized search tree, R tree and its
variants, constitutes an efficient and sound concurrency access
model for multidimensional databases and it supports efficient
operations with serializable, isolation, consistency and
deadlock free.

Index terms: Concurrency Control, Locking Management,
Phantom Problem.

1. INTRODUCTION:
Over the last decade (1988-98), the R tree has emerged as
one of the most robust multidimensional access methods.
However, before the R tree can be integrated as an access
method to a commercial strength database management
system, efficient techniques to provide transactional access
to data via R trees need to be developed. Concurrent access
to data through a multidimensional data structure
introduces the problem of protecting ranges specified in the
retrieval from phantom insertions and deletions (the
phantom problem). Existing approaches to phantom
protection in B trees (namely, key range locking) cannot be
applied to multidimensional data structures since they rely
on a total order over the key space on which the B tree is
designed. The paper presents a dynamic granular locking
approach to phantom protection in R trees. To the best of
our knowledge, the paper provides the first solution to the
phantom problem in multidimensional access methods
based on granular locking.
The phantom problem is defined as follows (from the
ANSI/ISO SQL-specifications Transaction T1 reads a set
of data items satisfying some <search condition>.
Transaction T2 then creates data items that satisfy T1’s
<search condition> and commits. If T1 then repeats its
scan with the same <search condition>, it gets a set of data
items (known as “phantoms”) different from the first read.
Phantoms must be prevented to guarantee serializable
execution. Object level locking does not prevent phantoms
since even if all objects currently in the database that
satisfy the search predicate are locked, concurrent
insertions into the search range cannot be prevented.

1.1. Modes of lock: Let me go ahead in explaining you the

various modes available with a typical table as above:
Modes of

Lock
Comment

Shared

This is a typical mode of operation for Select
statements where the resource can be shared
by multiple users. Since you are just reading
the data you can share the resource.

Modes of
Lock

Comment

Exclusive

The next operation we can think of is to do an
DML operation (Insert / Update / Delete).
This lock ensures that two people do not do
the modification on the same data at the same
time.

Update
This lock mode is used to mark an
object for the update operation.

Intent

This mode establishes an locking tree
mechanism wherein it can include an intent
shared, intent exclusive and share with
exclusive locks. This mode does stress the
point that the data can be updated at any
time. For example, this happens when you
take a cursor for update.

Schema

This lock is taken when we do an DDL
operation where the integrity of the database
schema needs to be verified. This can
include from creating a table, procedure,
alter a column width, adding an column etc.

Bulk
Update

This is taken when we do an Bulk-Upload of
data or Bulk Copying of data into the system.

1.2. Approaches to Phantom Protection:
There are two general strategies to solve the phantom
problem, namely predicate locking and its engineering
approximation, granular locking. In predicate locking,
transactions acquire locks on predicates rather than
individual objects. Although predicate locking is a
complete solution to the phantom problem, the cost of
setting and clearing predicate locks can be high since (1)
the predicates can be complex and hence checking for
predicate satisfiability can be costly and (2) even if
predicate satisfiability can be checked in constant time, the
complexity of acquiring a predicate lock is proportional in
the number of concurrent transactions which is an order of
magnitude costlier compared to acquiring object locks that
can be set and released in constant time [9]. In contrast, in
granular locking, the predicate space is divided into a set of
lockable resource granules. Transactions acquire locks on
granules instead of on predicates. The locking protocol
guarantees that if two transactions request conflicting mode
locks on predicates p and p0 such that p^p0 is satisfiable,
then the two transactions will request conflicting locks on
at least one granule in common. Granular locks can be set
and released as efficiently as object locks. For this reasons,
all existing commercial DBMSs use granular locking in
preference to predicate locking.
An example of the granular locking approach is the
multigranularity locking protocol (MGL) [12]. MGL
exploits additional lock modes called intention mode locks
which represent the intention to set locks at finer

N. Krishna Kumari et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 2019-2024

2019

granularity (see Table 1). Application of MGL to the key
space associated with a B-tree is referred to as key range
locking (KRL) [12, 13]. KRL cannot be applied for
phantom protection in multidimensional data structures
since it relies on the total order over the underlying objects
based on their key values which do not exist for
multidimensional data. Imposing an artificial total order
(say a Z-order [14]) over multidimensional data to adapt
KRL would result in a scheme with low concurrency and
high lock overhead since protecting a multidimensional
region query from phantom insertions and deletions will
require accessing and locking objects which may not be in
the region specified by the query (since an object will be
accessed as long as it is within the upper and the lower
bounds in the region according to the superimposed total
order). It would severely limit the usefulness of the
multidimensional AM, essentially reducing it to a 1-d AM
with the dimension being the total order.

1.2. Desiderate of the Solution:
Since KRL cannot be used in multidimensional index
structures, new techniques need to be devised to prevent
phantoms in such data structures. The principal challenges
in developing a solution based on granular locking are:
 Defining a set of lockable resource granules over the
multidimensional key space such that they (1) dynamically
adapt to key distribution (2) fully cover the entire
embedded space and (3) are fine enough to afford high
concurrency. The importance of these factors in the choice
of granules has been discussed in [9]. The lock granules
(i.e. key ranges) in KRL satisfy these 3 criteria.
Easy mapping of a given predicate onto a set of granules
that needs to be locked to scan the predicate. Subsequently,
the granular locks can be set or cleared as efficiently as
object locks using a standard lock manager (LM).
Handling overlap among granules effectively. This
problem does not arise in KRL since the key ranges are
always mutually disjoint. In multidimensional key space
partitioning, the set of granules defined may be, in GiST
terminology, “mutually consistent”. For example, there
may be spatial overlap among R-tree granules.
This complicates the locking protocol since a lock on a
granule may not provide an “exclusive coverage” on the
entire space covered by the granule. For correctness, the
granular locking protocols must guarantee that any two
conflicting operations will request conflicting locks on at
least one granule in common. This implies that at least one
of the conflicting operations must acquire locks on all
granules that overlap with its predicate while the other
must acquire conflicting locks on enough granules to fully
cover its predicate [5]. This leads to two alternative
strategies:
Overlap-for-Search and Cover-for-Insert Strategy (OSCI)
in which the searchers acquire shared mode locks on all
granules consistent with its search predicate whereas the
inserters, deleters and updators acquire IX locks on a
minimal set of granules sufficient to fully cover the object
being inserted, deleted or updated.
Cover-for-Search and Overlap-for-Insert Strategy (CSOI)
in which the searchers acquire shared mode locks on a
minimal set of granules sufficient to fully cover its search
predicate whereas the inserters, deleter’s and updater’s
acquire IX locks on all granules consistent with the object
being inserted, deleted or updated.

While the former strategy favors the insert and delete
operations by requiring them to do minimal tree traversal
and disfavors the search operation by requiring them to
traverse all consistent paths, the latter strategy does exactly
the reverse. Intermediate strategies are also possible. For
GL/GiST, we choose the OSCI strategy in preference to the
rest. The OSCI strategy effectively does not impose any
additional overhead on any operation as far as tree traversal
is concerned since searchers in GiST anyway follow all
consistent paths. The CSOI strategy may be better for index
structures where inserters follow all overlapping paths and
searchers follow only enough paths to cover its predicate.
The R+-tree is an example of such an index structure [15].
We assume that the OSCI strategy is followed for all 1In
this paper, we use the term “granules” to mean lock units –
resources that are locked to insure isolation and not in the
sense of granules in “granule graph” of MGL [9]. This is
discussed in further detail in Section 4.1. discussions in the
rest of the paper.
Preventing Phantoms
 Table locking prevents phantoms; row locking does not

Predicate locking prevents phantoms
 A predicate describes a set of rows, some are in a table

and some are not
 Every SQL statement has an associated predicate
 When executing a statement, acquire a (read or write)

lock on the associated predicate
 Two predicate locks conflict if one is a write and there

exists a row (not necessarily in the table) that is
contained in both.

Terminology
In developing the algorithms, we assume, as in [12], that a
transaction may request the following types of operations
on GiST: Search, Insert, Delete, Read Single, Update
Single and Update Scan. In presenting the solution to the
phantom problem, we describe the lock requirements of
each of these and present the algorithms used to acquire the
necessary locks. The lock protocols assumes the presence
of a standard LM which supports all the MGL locks modes
(as shown in Table 1) as well as conditional and
unconditional lock options [16]. Furthermore, locks can be
held for different durations, namely, instant, short and
commit durations [16]. While describing the lock
requirements of various operations for phantom protection,
we assume the presence of some protocol for preserving the
physical consistency of the tree structure in presence of
concurrent operations. The lock protocol presented in this
paper guarantees phantom protection independent of the
specific algorithm used to preserve tree consistency. In our
implementation, we have combined the GL/GiST protocol
with the latching protocol proposed in [10]. We do not
describe the combined algorithms in this paper due to space
limitations but can be found in the longer version of this
paper [5].

2 RELATED RESEARCH AND MOTIVATION
In this section, we review the structure of the R-tree family,
discuss some limitations that affect R+-trees, survey major
concurrency control algorithms based on B-trees and R-
trees, and summarize the challenges inherent in applying
concurrency control to R+-trees.

N. Krishna Kumari et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 2019-2024

2020

2.1 R-Tree Index Structure:
An R-tree [2] is a height-balanced tree similar to a B-tree
with index records in its leaf nodes containing pointers to
data objects Nodes correspond to disk pages If the index is
disk resident, and the structure is designed so that a spatial
search requires visiting only a small number of nodes The
index is completely dynamic; inserts and deletes can be
inter- mixed with searches and no periodic reorganization is
required.
2.2. R-Plus Tree:
We move now to formally describe the structure of R+ Tree
[3]. A leaf node is of the form (oil, RECT) where oil is an
object identifier and is used to refer to an object in the
database. RECT is used to describe the bounds of data
objects. For example, in a 2-dimensional space, an entry
RECT will be of the form (Xlow,Xhigh,YIow,Yhigh)
which represents the coordinates of the lower-left and
upper-right corner of the rectangle. An inter- mediate node
is of the form where p is a pointer to a lower level node of
the tree and RECT is a representation of the rectangle that
encloses.

Fig 2.a Rectangles organized on to R Tree

Fig 2.b. R Tree for Rectangles of Fig 2.a.

Fig 2.c Rectangles organized on to R Plus Tree

Fig 2.d. R Plus Tree for Rectangles of Fig 2.c.

2.3 Concurrency Controls:
Several concurrency control algorithms have been proposed
to support concurrent operations on multidimensional index
structures, and they can be categorized into lock-coupling-
based and link-based algorithms. The lock coupling- based
algorithms [20], [21] release the lock on the current node
only when the next node to be visited has been locked
while processing search operations. During node splitting
and MBR updating, these approaches must hold multiple
locks on several nodes simultaneously, which may
deteriorate the system throughput.
The link-based algorithms [29], [30], [31], [32], [26] were
proposed to reduce the number of locks required by lock
coupling- based algorithms. These methods lock one node
most of the time during search operations, only employing
lock coupling when splitting a node or propagating MBR
changes. The link-based approach requires all nodes at the
same level be linked together with right or bidirectional
links. This method reaches high concurrency by using only
one lock simultaneously for most operations on the B-tree.
The link-based approach cannot be used directly in
multidimensional data access methods as there is no linear
ordering for multidimensional objects. To overcome this
problem, a right-link style algorithm (R-link tree) [30] has
been proposed to provide high concurrency control by
assigning logical sequence numbers (LSNs) on R-trees.
However, when a node splitting propagates and its MBR
updates, this algorithm still applies lock coupling. Also, in
this algorithm, additional storage is required to retain extra
information for the LSNs of associated child nodes. To
solve this extra storage problem, Concurrency on
Generalized Search Tree (CGiST) [31] applies a global
sequence number, the Node Sequence Number (NSN). The
counter for NSN is incremented for each node split, with
the original node receiving the new value and the new
sibling node inheriting the previous NSN and its right-link
pointer. In order for the algorithm to work correctly,
multiple locks on two or more levels must be held by a
single insert operation, which increases the blocking time
for search operations.
Several mechanisms, such as top-down index region
modification (TDIM), copy-based concurrent update
(CCU), CCU with non blocking queries (CCUNQ) [29],
and partial lock coupling (PLC) [26], have been proposed
to improve the concurrency based on the above linking
techniques. However, the link-based approach with these
improvements is still not sufficient to provide phantom
update protection. Phantom updating refers to updates that
occur before the commitment, in the range of a search (or a
following update), and are not reflected in the results of
that search (or the following update). Concurrent data
access through multidimensional indexes introduces the
problem of protecting a query range from phantom updates.
The dynamic granular locking approach (DGL) has been
proposed to provide phantom update protection in the R-
tree [5] and GiST [5].The DGL method dynamically
partitions an embedded space into lockable granules that
adapt to the distribution of objects. The leaf nodes and
external granules of internal nodes are defined as lockable
granules. External granules are additional structures that
partition the non covered space in each internal node to
provide protection. According to the principles of granular
locking, each operation requests locks on sufficient

N. Krishna Kumari et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 2019-2024

2021

g
r
A
p
g
c
2
T
d
r
I
c
r
T

C
lo
a
h
o
o
le
b
A
to
c
u
r
e
in
a
o
a
T
tr
r
le
u
m
b
c
lo
D
T
o
E

granules such
request conflic
Although the
protection fo
granular lock
complexity of
2.4 Isolation L
Transactions
degree to wh
resource or da
solation lev

concurrency s
reads, are allow
Transaction iso
 Whether lo

type of lock
 How long t
 Whether a

another tran
 Blocks unti
 Retrieves t

at the time
 Reads the u
Choosing a tr
ocks acquired

always gets an
holds that lock
of the isolatio
operations, tra
evel of protec

by other transa
A lower isolat
o access data

concurrency e
users might en
reduces the ty
encounter, bu
ncreases the

another. Choo
on balancing
application ag
The highest is
ransaction wi

repeats a read
evel of lockin

user systems. T
may retrieve d
by other trans
can happen in
ocking or vers
Database Eng
The ISO stand
of which are
Engine:

 Read
transac
physica

 Read c
 Repeat
 Serializ

are com

h that any tw
cting locks on

DGL appro
or multidime
ks can be
DGL may im

Levels in Dat
specify an is

hich one tran
ata modificatio
els are des

side-effects, s
wed.
olation levels
ocks are taken
ks are request
the read locks
read operatio
nsaction:
il the exclusiv
the committed
the statement

uncommitted d
ransaction iso
d to protect da
n exclusive lo
k until the tr
on level set

ansaction isola
ction from the
actions.
tion level incr
at the same ti

effects (such
ncounter. Con
ypes of concu
ut requires

chances tha
osing the appr

the data i
gainst the ove
solation level
ll retrieve exa

d operation, b
ng that is likely
The lowest iso

data that has b
sactions. All o
n read uncom
sioning, so ov
gine Isolation
dard defines th
e supported b

uncommitted
ctions are isol
ally corrupt da

committed (Da
table read
zable (the hig
mpletely isolat

wo conflictin
n at least one

oach provides
nsional acce
efficiently i

mpact the degre
a Base Engin
solation level
saction must
ons made by
scribed in
uch as dirty

control:
n when data
ted.
s are held.
on referencing

ve lock on the
d version of th
t or transaction
data modifica
lation level d
ata modificati

ock on any da
ansaction com
for that tran

ation levels pr
e effects of m

reases the abi
ime, but incre
as dirty read

nversely, a hig
urrency effec
more system

at one transa
ropriate isolat
integrity requ
erhead of eac
, serializable,

actly the same
ut it does thi
y to impact ot
olation level,
een modified
of the concur
mmitted, but

verhead is min
n Levels:
he following i
by the SQL

d (the low
ated only eno
ata is not read
atabase Engin

ghest level, w
ted from one a

ng operations
e common gra
s phantom up
ess methods
implemented,
ee of concurre
ne:
l that define

be isolated
other transact
terms of w
reads or pha

is read, and

g rows modifie

row is freed.
he row that ex
n started.

ation.
does not affec
ions. A transa
ata it modifies
mpletes, regar
nsaction. For
rimarily defin

modifications

ility of many
ases the numb

ds or lost upd
gher isolation
cts that users
m resources
action will b
tion level dep
uirements of
ch isolation
, guarantees t
e data every ti
is by perform
ther users in m
read uncomm
but not comm

rrency side ef
there is no

nimized.

isolation level
Server Data

west level w
ough to ensure
d)
ne default leve

where transac
another).

 will
anule.
pdate

and
 the

ency.

s the
from

tions.
which
antom

what

ed by

xisted

ct the
action
s, and
rdless

read
ne the
made

users
ber of
dates)
level
may
and

block
pends
f the
level.
that a
ime it

ming a
multi-

mitted,
mitted
ffects

read

ls, all
abase

where
e that

l)

ctions

T
insta
the l

Page
Page
show
spec
stora
DBM
Lock
relat
new
disk

Clus
Clus
contr
locki
page
clust
the c

Clas
Clas
class
one
lowe
of th

The amount of
ance or group
ock. The type
 Page lock
 Cluster lo
 Class or t
 Object or

e locking
e locking (or p
wn in the figur
ific page are

age in compu
MSs. In this f
king for obje
tional tuple’s

to you, just t
where multip

ster locking
ster locking
rol is illustra
ing, all data c

es) will be loc
ters of objects
cluster of obje

ss or table loc
s or table loc
s or table are l
form of con

er left. It repr
he page where

f data that ca
ps of instance
es of granulari
king
ocking
table locking
r instance lock

page-level loc
re below. In th
e locked. A p
uter systems a
figure, each r

ects is on the
is on the righ
think of a pag

ple data instan

or container
ated in the fig
clustered toge
cked simultan
s in ODBMSs
ects spans port

cking
cking means t
locked, as is i
currency con

resents all ins
they are store

an be locked w
es defines the
ity are illustrat

king

cking) concurr
his situation, a
page is a co
and is used b
rectangle repr
e left and pa
ht. If the conc
ge as a unit o
ces are stored

r locking fo
gure below. I
ether (on a pa
neously. This
s. Note that in
tions of three p

that all instan
llustrated belo

ntrol. Note th
tances of a cl
ed.

with the sing
e granularity o
ted here are:

rency control
all the data on
ommon unit o
by all types o
resents a pag

age locking fo
cept of pages
of space on th
d.

or concurrenc
In this form o
age or multip
applies only t
n this exampl
pages.

nces of either
ow. This show

he circle at th
lass, regardles

le
of

is
n a
of
of

ge.
for

is
he

cy
of
le
to
le,

a
ws
he
ss

N. Krishna Kumari et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 2019-2024

2022

O

a
c

T
d
p
R
J
p
c
th
c
e
d
tr
R
r
A
a
Z
d
tr
a
th
tr
n
c
in
T
T
e
Z
c
tw
p
e
le
s
q
q
u
A
th
b
p
o

Object or inst
Instan

an RDBMS or
concurrency co

The experime
desktop with
platform unde
R-tree, the R+
Java source p
portal [26]. T
construction a
hese experim

construct the
evaluating th
determining fa
ree does not i

R+-tree. The
recorded by
Additionally, t
accesses were
ZR+-tree and
different wind
rees in order

analysis of the
he point quer
rees are expec

number of di
computed to b
n order to redu

Throughput o
The performa
evaluated both
ZR+-tree with
compare these
wo paramete

probability we
environments
evel is define

simultaneously
queries in the
queries. The e
used to represe
According to t
he ZR+-tree

better than the
probability is
only the outsta

tance locking
nce locking lo
r a single obje
ontrol is illust

3. EXPERIM

ents [1] were
512 Mbyte

er windows X
+-tree, and the
package for R
The first set
and query pe

ments, differen
e ZR+-trees,
he query pe
actor, because
introduce extr

disk accesse
varying

the standard d
e calculated t
d the R+-tree
dow sizes we
r to record

e algorithm giv
ry and window
cted to be bett
sk accesses i

be the average
uce the impac
of Concurren
ance for con
h for the R-tre
h the propose
e two multid
ers, namely,
ere applied to
on the three

ed as the num
y, and write p
e whole simu
execution time
ent the throug
the algorithm

with concur
e R-tree with g
low. This per

anding query p

g
ocks a single
ect in an ODB
trated below.

MENTAL SETU

e conducted
es memory,
XP. The imple
e ZR+-tree we
R-tree obtaine

of experime
rformance of
nt data sizes
 R-trees, a

erformance,
e the query pr
ra computatio
es of the po
the number

deviations of t
to compare th
e. Consequen
re executed o
the execution
ven in the pre
w query perfo
ter than those
in this set of
 value for 1,0

ct of uneven d
ncy Control
ncurrent quer
ee with granul
ed GLIP pro
imensional ac
concurrency

o simulate di
e data sets. H
mber of queri
probability de
ultaneous que
e measured in
ghput of each
analysis in th

rrency contro
granular locki
rformance gai
performance o

relational tup
BMS. This ty

UP:
on a Pentiu
running a J

ementations o
ere all based o
ed from the R
ents evaluated
f the ZR+-tre

were selecte
and R+-trees
I/O cost is

rocess on the
on compared t
oint queries
r of rectan
the number of
he stability o
ntly, queries
on the constr
n cost. From
vious section,

formances of
of the R-trees

f experiments
000 random qu
data distributio

ry execution
lar locking an
tocol. In ord
ccess framew

level and
fferent applic
Here, concurr
ies to be exe
escribes how m
ery set are u
n milliseconds
of the approa

he previous sec
ol should per
ing when the
in comes from
of the ZR+-tre

ple in
ype of

um 4
Java2
of the
on the
R-tree
d the
ee. In
ed to
s. In
s the
ZR+-
to the
were

ngles.
f disk

of the
with

ructed
m the
, both
ZR+-

s. The
s was
ueries
on.

was
nd the
der to
works,

write
cation
rency
cuted
many

update
s was
aches.
ction,
rform
write

m not
ee but

also
The
expe
the
expe
was
relat
Fig 3
three
write
data
30
prob
in th
conc
of u
term
throu
Com
prob
gran
smal
of th
exce
conc
bette
data
conc
tree
perc
readi
prov
on th
the w

Fig.

Fig.
on S

the finer gra
size of the qu

eriments. The
same as th

eriments, exce
reduced to 5

tively small da
3.0 and Fig 3
e data sets wit
e probabilities
space. The c

and 50 as
bability varied
hese figures
current operati
update operati

ms of percen
ughput whe

mparing the
babilities, GLI
nular locking o
ll. When the w
he concurrency
eeds that of
currency level
er with a write

sets. When t
currency contr

in cases whe
ent. From this
ing predomin

vided better th
he Rtree, altho
write probabili

 3.0. Point Qu

 3.1. Window
ynthetic Data

anules of the
ueries execute
data sets use

hose used in
ept that the si
,000 in order
ata sets compa
.1 shows the
th a fixed con
s when the qu
concurrency le

representative
d from 5 perce

shows the t
ions, and the
ions in all th
ntages. Both
en the wri
performance
IP on the ZR
on the R-tree w
write probabil
y control on th

the ZR+-tre
l is 30, the thr
e probability l
the concurren
rol on the ZR
ere the write
s set of figure

nant environm
hroughput tha
ough this adv
ity increased.

uery Performa

w Query Perf
a

leaf nodes in
ed was tunabl
d in these exp
n the query
ize of the syn

r to assess the
ared to the rea
execution tim

ncurrency leve
uery range is 1
evel was fixed
e levels, wh
ent to 40 perc
time taken t
x-axis indicat

he concurrent
h approaches
ite probabili

from the d
R+-tree perfor
when the writ
lity increases,
he R-tree com
ee. Specifica
roughput of th
lower than 30

ncy level is ra
R+-tree outpe
probability i

s, it can be co
ments, GLIP o
an dynamic gr
antage tended

ance of R-tree

formance of R

n the ZR+-tre
le in this set o
periments wer
y performanc
nthetic data s
e throughput i
al data sets.
me costs for th
el and changin
1 percent of th
d at two leve
hile the wri
ent. The y-ax

to finish thes
tes the portion
t operations i
 degrade th
ity increase
different wri
rms better tha
te probability
the throughpu

mes close to an
ally, when th
he ZR+- tree
 percent in re

aised to 50, th
erforms the R
is less than 3
oncluded that i
n the ZR+-tre
ranular lockin
d to decrease a

, R+-tree,

R-tree, R+-tre

ee.
of
re
ce
et
in

he
ng
he
els
te

xis
se
ns
in
he
es.
te
an
is
ut
nd
he
is
al
he
R-
35
in
ee
ng
as

ee,

N. Krishna Kumari et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 2019-2024

2023

CONCLUSION
This paper proposes a new concurrency control protocol,
GLIP, with an improved spatial indexing approach, the
ZR+-tree. GLIP is the first concurrency control mechanism
designed specifically for the R+-tree and its variants. It
assures serializable isolation, consistency, and deadlock
free for indexing trees with object clipping. The ZR+-tree
segments the objects to ensure every fragment is fully
covered by a leaf node. This clipping-object design
provides a better indexing structure. Furthermore, several
structural limitations of the R+-tree are overcome in the
ZR+-tree by the use of a non-overlap clipping and a
clustering-based reinsert procedure. Experiments on tree
construction, query, and concurrent execution were
conducted on both real and synthetic data sets, and the
results validated the soundness and comprehensive nature
of the new design. In particular, the GLIP and the ZR+-tree
excel at range queries in search-dominant applications.
Extending GLIP and the ZR+-tree to perform spatial joins,
KNN-queries, and range aggregation offer further attractive
possibilities.

REFERENCES:
[1].GLIP: A Concurrency Control Protocol for Clipping Indexing by

Chang-Tien Lu, Member, IEEE , JingDai, Student Member, IEEE,
Ying Jin, and Janak Mathuria, IEEE TRANSACTIONS ON
KNOWLEDGE AND DATA ENGINEERING, VOL. 21, NO. 5,
MAY 2009

[2]R-TREES. A DYNAMIC INDEX STRUCTURE FOR SPATIAL
SEARCHING Antomn Guttman University of Cahforma Berkeley

[3]THE R+-TREE: A DYNAMIC INDEX FOR MULTI-DIMENSIONAL
OBJECTS Timos Sellis, Nick Roussopoulosand Christos Faloutsos2
Department of Computer Science University of Maryland College
Park, MD 20742Conf. Principles of Database Systems (PODS ’87),
pp. 159-169, 1987.

[4]K. Chakrabarti and S. Mehrotra, “Dynamic Granular Locking
Approach to Phantom Protection in R-Trees,” Proc. 14th IEEE Int’l
Conf. Data Eng. (ICDE ’98), pp. 446-454, 1998.

[5]K. Chakrabarti and S. Mehrotra, “Efficient Concurrency Control in
Multi-Dimensional Access Methods,” Proc. ACM SIGMOD ’99, pp.
25-36, 1999.

[6] J.K. Chen, Y.F. Huang, and Y.H. Chin, “A Study of Concurrent
Operations on R-Trees,” Information Sciences, vol. 98, nos. 1-4, pp.
263-300, May 1997.

[7] V. Gaede and O. Gunther, “Multidimensional Access Methods,” ACM
Computing Surveys, vol. 30, no. 2, pp. 170-231, June 1998.

[8] D. Greene, “An Implementation and Performance Analysis of Spatial
Data Access Methods,” Proc. Fifth IEEE Int’l Conf. Data Eng.
(ICDE ’89), pp. 606-615, 1989.

[9] J. Hellerstein, J. Naughton, and A. Pfeffer. Generalized search trees in
database systems. In Proceeding of VLDB, pages 562573,
September 1995.

[10] M. Kornacker, C. Mohan, and J. Hellerstein. Concurrency and
recovery in generalized search trees. In Proc. of SIGMOD, 1997.

[11]D. Lomet. Key range locking strategies for improved concurrency. In
VLDB Proceedings, August 1993.

[12].J. Melton and A. R. Simon. Understanding the new sql: A complete
guide. Morgan Kauffman, 1993.

[13].C. Mohan. ARIES/KVL: A key value locking method for
concurrency control of multiaction transactions operating on btree
indexes. In Proceeding of VLDB, August 1990.

 [14]A transaction recovery method supporting fine-granularity locking
and partial rollbacks using write-ahead logging. ACM TODS, Vol.
17, No. 1:94–162, March 1992.[15] B. Nichols, D. Buttlar, and J. P.
Farrell. Pthreads Programming. O’Reilly & Associates, 1996

 [15] M. Kornacker, C. Mohan, and J. Hellerstein, “Concurrency and
Recovery in Generalized Search Trees,” Proc. ACM SIGMOD ’97,
pp. 62-72, 1997.

[16] P. Lehman and S. Yao, “Efficient Locking for Concurrent Operations
on B-trees,” ACM Trans. Database Systems, vol. 6, no. 4, pp. 650-
670, Dec. 1981.

[17] D. Lomet, “Key Range Locking Strategies for Improved
Concurrency,” Proc. 19th Int’l Conf. Very Large Data Bases (VLDB
’93), pp. 655-664, 1993.

[18] C. Mohan and F. Levin, “ARIES/IM: An Efficient and High
Concurrency Index Management Method Using Write-Ahead
Logging,” Proc. ACM SIGMOD ’92, pp. 371-380, 1992.

[19] V. Ng and T. Kamada, “Concurrent Accesses to R-Trees,” Proc.
Third Symp. Advances in Spatial Databases (SSD ’93), pp. 142-161,
1993.

[20] J. Nievergelt, H. Hinterberger, and K.C. Sevcik, “The Grid File: An
Adaptable, Symmetric Multikey File Structure,” ACM Trans.
Database Systems, vol. 9, no. 1, pp. 38-71, Mar. 1984.

[21] J.A. Orenstein and T.H. Merrett, “A Class of Data Structures for
Associative Searching,” Proc. Third Symp. Principles of Database
Systems (PODS ’84), pp. 181-190, 1984.

[22] J.T. Robinson, “The K-D-B-Tree: A Search Structure for Large
Multidimensional Dynamic Indexes,” Proc. ACM SIGMOD ’81, pp.
10-18, 1981. Conf. Very Large Data Bases (VLDB ’87), pp. 507-
518, 1987.

[23] M. Abdelguerfi, J. Givaudan, K. Shaw, and R. Ladner, “The 2-
3TRTree, a Trajectory-Oriented Index Structure for Fully Evolving
Valid-Time Spatio-Temporal Datasets,” Proc. 10th ACM Int’l Symp.
Advances in Geographic Information System (ACMGIS ’02), pp.
29-34, 2002.

[24] L. Shou, Z. Huang, and K.-L. Tan, “The Hierarchical Degree-
ofVisibility Tree,” IEEE Trans. Knowledge Data Eng., vol. 16, no.
11, pp. 1357-1369, Nov. 2004.[25] S.I. Song, Y.H. Kim, and J.S.
Yoo, “An Enhanced Concurrency Control Scheme for
Multidimensional Index Structure,” IEEE Trans. Knowledge Data
Eng., vol. 16, no. 1, pp. 97-111, Jan. 2004.

[26] Y. Theodoridis, “The R-Tree Portal,” http://www.rtreeportal.org,
2005.

[27] P.S. Yu, K.-L. Wu, K.-J. Lin, and S.H. Son, “On Real-Time
Databases: Concurrency Control and Scheduling,” Proc. IEEE, vol.
82, no. 1, pp. 140-157, Jan. 1994.

[28] D. Zhang and T. Xia, “A Novel Improvement to the R-Tree Spatial
Index Using Gain/Loss Metrics,” Proc. 12th ACM Int’l Symp.
Advances in Geographic Information Systems (ACMGIS ’04), pp.
204-213, 2004.

[29] K.V.R. Kanth, D. Serena, and A.K. Singh, “Improved Concurrency
Control Techniques for Multi-Dimensional Index Structures,” Proc.
Ninth Symp. Parallel and Distributed Processing (SPDP ’98), pp.
580-586, 1998.

[30] M. Kornacker and D. Banks, “High-Concurrency Locking in R-
Trees,” Proc. 21st Int’l Conf. Very Large Data Bases (VLDB ’95),
pp. 134-145, 1995.

[31] M. Kornacker, C. Mohan, and J. Hellerstein, “Concurrency and
Recovery in Generalized Search Trees,” Proc. ACM SIGMOD ’97,
pp. 62-72, 1997.

[32] P. Lehman and S. Yao, “Efficient Locking for Concurrent Operations
on B-trees,” ACM Trans. Database Systems, vol. 6,no. 4, pp. 650-
670, Dec. 1981.

[33] D. Lomet, “Key Range Locking Strategies for Improved
Concurrency,” Proc. 19th Int’l Conf. Very Large Data Bases (VLDB
’93), pp. 655-664, 1993.

Authors Biography

N Krishna Kumari, pursuing M.Tech. (I.T.) in
Dept. of Information Technology, University
College of Engineering, JNTUK - Vizianagaram
Campus, VIZIANAGARAM, Andhra Pradesh,
India. Participated and Presented papers at National
Level, Seminars and Technical Symposiums.

Dr MHM Krishna Prasad is working as an
Associate Professor and Head, Dept. of Information
Technology, University College of Engineering,
JNTUK- Vizianagaram Campus,
VIZIANAGARAM, Andhra Pradesh, India.
Received PhD from JNTU Hyderabad and M. Tech
from SIT, JNTU, Hyderabad. Had vast Experience
in industry and academics, and published papers in
various International Conferences and Journals

N. Krishna Kumari et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 2019-2024

2024

